The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli

Citations of this article
Mendeley users who have this article in their library.


Replacement of glutamate 95 for glutamine in the NADH- and FMN-binding NuoF subunit of E. coli Complex I decreased NADH oxidation activity 2.5-4.8 times depending on the used electron acceptor. The apparent Km for NADH was 5.2 and 10.4 μM for the mutant and wild type, respectively. Analysis of the inhibitory effect of NAD+ on activity showed that the E95Q mutation caused a 2.4-fold decrease of KiNAD+ in comparison to the wild type enzyme. ADP-ribose, which differs from NAD+ by the absence of the positively charged nicotinamide moiety, is also a competitive inhibitor of NADH binding. The mutation caused a 7.5-fold decrease of KiADP-ribose relative to wild type enzyme. Based on these findings we propose that the negative charge of Glu95 accelerates turnover of Complex I by electrostatic interaction with the negatively charged phosphate groups of the substrate nucleotide during operation, which facilitates release of the product NAD+. The E95Q mutation was also found to cause a positive shift of the midpoint redox potential of the FMN, from - 350 mV to - 310 mV, which suggests that the negative charge of Glu95 is also involved in decreasing the midpoint potential of the primary electron acceptor of Complex I. © 2008 Elsevier B.V. All rights reserved.




Euro, L., Belevich, G., Bloch, D. A., Verkhovsky, M. I., Wikström, M., & Verkhovskaya, M. (2009). The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli. Biochimica et Biophysica Acta - Bioenergetics, 1787(1), 68–73.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free