This paper describes the design of a low-cost α+β type Ti-4V-0.6O alloy and the investigation of its microstructure and mechanical properties, with a focus on heat treatability. The β transus (Tβ) of the alloy was found to be 1195 K, as determined from the relationship between the heat treatment temperature and the volume fraction of the equiaxed α phase (fα). The formation of α′ martensite exhibiting an acicular morphology was observed after heat treatments between 1073 and 1273 K. The O content in the equiaxed α and β phases increased with increasing heat treatment temperature while the V content increased with decreasing heat treatment temperature. The alloy demonstrated a higher tensile strength and lower total elongation when heat-Treated between 1073 and 1173 K as compared to the as-forged material, because of the formation of α′ martensite. The reduced total elongation was caused by the increase in the hardness difference between the equiaxed α and β (α′ martensite) grains. The tensile strength and total elongation of the Ti-4V-0.6O alloy were comparable to those of the Ti-6Al-4V alloy, which marks the material as a low-cost α+β type Ti alloy candidate.
CITATION STYLE
Omiya, M., Ueda, K., & Narushima, T. (2017). Microstructure and mechanical properties of an α+β Type Ti-4V-0.6O Alloy. Materials Transactions, 58(9), 1250–1256. https://doi.org/10.2320/matertrans.L-M2017825
Mendeley helps you to discover research relevant for your work.