Flavonoids are structurally diverse and the most ubiquitous groups of dietary polyphenols distributed in various fruits and vegetables. In this study, the interaction between five flavonoids, namely formononetin-7-O-β-D- glucoside, calycosin- 7-O-β-D-glucoside, calycosin, rutin, and quercetin, and bovine serum albumin (BSA) was investigated by fluorescence and UV-vis absorbance spectroscopy. In the discussion, it was proved that the fluorescence quenching of BSA by flavonoids was a result of the formation of a flavonoid-BSA complex. Fluorescence quenching constants were determined using the Stern-Volmer and Lineweaver-Burk equations to provide a measure of the binding affinity between the flavonoids and BSA. The binding constants ranked in the order quercetin > rutin > calycosin > calycosin-7-O-β-D-glucoside ≊ formononetin-7-O-β-D-glucoside. The results of thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures indicated that the hydrophobic interaction played a major role in flavonoid-BSA association. The distance r between BSA and acceptor flavonoids was also obtained according to Förster's theory of non-radiative energy transfer. © 2010 by the authors; licensee MDPI, Basel, Switzerland.
CITATION STYLE
Liu, E. H., Qi, L. W., & Li, P. (2010). Structural relationship and binding mechanisms of five flavonoids with bovine serum albumin. Molecules, 15(12), 9092–9103. https://doi.org/10.3390/molecules15129092
Mendeley helps you to discover research relevant for your work.