Epidermal integrity and wound healing depend on remodeling of cell-matrix contacts including hemidesmosomes. Mutations in β4-integrin and plectin lead to severe epidermolysis bullosa (EB). Whether mutations in keratins K5 or K14, which cause EB simplex, also compromise cell-matrix adhesion through altering hemidesmosomal components is not well investigated. In particular, the dependence of β4-integrin endocytosis and turnover on keratins remains incompletely understood. Here, we show that the absence of keratins causes loss of plectin-β4-integrin interaction and elevated β4-integrin phosphorylation at Ser1354 and Ser1362. This triggered a caveolin-dependent endocytosis of β4-integrin but not of other integrins through Rab5 and Rab11 compartments in keratinocytes. Expressing a phospho-deficient β4-integrin mutant reduces β4-integrin endocytosis and rescues plectin localization in keratin-free cells. β4-integrin phosphorylation in the absence of keratins resulted from elevated Erk1/2 activity downstream of increased EGFR and PKCá signaling. Further, increased Erk1/2 phosphorylation and altered plectin localization occur in keratin-deficient mouse epidermis in vivo. Strikingly, expression of the K14-R125P EBS mutant also resulted in plectin mislocalization and elevated β4-integrin turnover, suggesting disease relevance. Our data underscore a major role of keratins in controlling β4-integrin endocytosis involving a plectin-Erk1/2-dependent mechanism relevant for epidermal differentiation and pathogenesis.
CITATION STYLE
Seltmann, K., Cheng, F., Wiche, G., Eriksson, J. E., & Magin, T. M. (2015). Keratins stabilize hemidesmosomes through regulation of β4-integrin turnover. Journal of Investigative Dermatology, 135(6), 1609–1620. https://doi.org/10.1038/jid.2015.46
Mendeley helps you to discover research relevant for your work.