Perturbation Based Learning for Structured NLP Tasks with Application to Dependency Parsing

5Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

Abstract

The best solution of structured prediction models in NLP is often inaccurate because of limited expressive power of the model or to non-exact parameter estimation. One way to mitigate this problem is sampling candidate solutions from the model’s solution space, reasoning that effective exploration of this space should yield high-quality solutions. Unfortunately, sampling is often computationally hard and many works hence back-off to sub-optimal strategies, such as extraction of the best scoring solutions of the model, which are not as diverse as sampled solutions. In this paper we propose a perturbation-based approach where sampling from a probabilistic model is computationally efficient. We present a learning algorithm for the variance of the perturbations, and empirically demonstrate its importance. Moreover, while finding the argmax in our model is intractable, we propose an efficient and effective approxima-tion. We apply our framework to cross-lingual dependency parsing across 72 corpora from 42 languages and to lightly supervised dependency parsing across 13 corpora from 12 lan-guages, and demonstrate strong results in terms of both the quality of the entire solution list and of the final solution.

Cite

CITATION STYLE

APA

Doitch, A., Yazdi, R., Hazan, T., & Reichart, R. (2019). Perturbation Based Learning for Structured NLP Tasks with Application to Dependency Parsing. Transactions of the Association for Computational Linguistics, 7, 643–659. https://doi.org/10.1162/tacl_a_00291

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free