Recent years have seen major innovations in cross-layer wireless designs. Despite demonstrating significant throughput gains, hardly any of these technologies have made it into real networks. Deploying cross-layer innovations requires adoption from Wi-Fi chip manufacturers. Yet, manufacturers hesitate to undertake major investments without a better understanding of how these designs interact with real networks and applications. This paper presents the first step towards breaking this stalemate, by enabling the adoption of cross-layer designs in today's networks with commodity Wi-Fi cards and actual applications. We present OpenRF, a cross-layer architecture for managing MIMO signal processing. OpenRF enables access points on the same channel to cancel their interference at each other's clients, while beamforming their signal to their own clients. OpenRF is self-configuring, so that network administrators need not understand MIMO or physical layer techniques. We patch the iwlwifi driver to support OpenRF on off-the-shelf Intel cards. We deploy OpenRF on a 20-node network, showing how it manages the complex interaction of cross-layer design with a real network stack, TCP, bursty traffic, and real applications. Our results demonstrate an average gain of 1.6x for TCP traffic and a significant reduction in response time for real-time applications, like remote desktop. © 2013 ACM.
CITATION STYLE
Kumar, S., Cifuentes, D., Gollakota, S., & Katabi, D. (2013). Bringing cross-layer MIMO to today’s wireless LANs. In SIGCOMM 2013 - Proceedings of the ACM SIGCOMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (pp. 387–398). https://doi.org/10.1145/2486001.2486034
Mendeley helps you to discover research relevant for your work.