A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1

  • Patel S
  • George L
  • Prasanth Kumar S
  • et al.
N/ACitations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite’s resistance mechanism.

Cite

CITATION STYLE

APA

Patel, S. K., George, L.-B., Prasanth Kumar, S., Highland, H. N., Jasrai, Y. T., Pandya, H. A., & Desai, K. R. (2013). A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1 . ISRN Bioinformatics, 2013, 1–15. https://doi.org/10.1155/2013/437168

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free