A method for reproducible high-resolution imaging of 3D cancer cell spheroids

5Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Multicellular tumour cell spheroids embedded within three-dimensional (3D) hydrogels or extracellular matrices (ECM) are widely used as models to study cancer growth and invasion. Standard methods to embed spheroids in 3D matrices result in random placement in space which limits the use of inverted fluorescence microscopy techniques, and thus the resolution that can be achieved to image molecular detail within the intact spheroid. Here, we leverage UV photolithography to microfabricate PDMS (polydimethylsiloxane) stamps that allow for generation of high-content, reproducible well-like structures in multiple different imaging chambers. Addition of multicellular tumour spheroids into stamped collagen structures allows for precise positioning of spheroids in 3D space for reproducible high-/super-resolution imaging. Embedded spheroids can be imaged live or fixed and are amenable to immunostaining, allowing for greater flexibility of experimental approaches. We describe the use of these spheroid imaging chambers to analyse cell invasion, cell–ECM interaction, ECM alignment, force-dependent intracellular protein dynamics and extension of fine actin-based protrusions with a variety of commonly used inverted microscope platforms. This method enables reproducible, high-/super-resolution live imaging of multiple tumour spheroids, that can be potentially extended to visualise organoids and other more complex 3D in vitro systems.

Cite

CITATION STYLE

APA

Phillips, T. A., Caprettini, V., Aggarwal, N., Marcotti, S., Tetley, R., Mao, Y., … Cox, S. (2023). A method for reproducible high-resolution imaging of 3D cancer cell spheroids. Journal of Microscopy, 291(1), 30–42. https://doi.org/10.1111/jmi.13169

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free