Topological defect-mediated skyrmion annihilation in three dimensions

19Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

The creation and annihilation of magnetic skyrmions are mediated by three-dimensional topological defects known as Bloch points. Investigation of such dynamical processes is important both for understanding the emergence of exotic topological spin textures, and for future engineering of skyrmions in technological applications. However, while the annihilation of skyrmions has been extensively investigated in two dimensions, in three dimensions the phase transitions are considerably more complex. We report field-dependent experimental measurements of metastable skyrmion lifetimes in an archetypal chiral magnet, revealing two distinct regimes. Comparison to supporting three-dimensional geodesic nudged elastic band simulations indicates that these correspond to skyrmion annihilation into either the helical and conical states, each exhibiting a different transition mechanism. The results highlight that the lowest energy magnetic configuration of the system plays a crucial role when considering the emergence and stability of topological spin structures via defect-mediated dynamics.

Cite

CITATION STYLE

APA

Birch, M. T., Cortés-Ortuño, D., Khanh, N. D., Seki, S., Štefančič, A., Balakrishnan, G., … Hatton, P. D. (2021). Topological defect-mediated skyrmion annihilation in three dimensions. Communications Physics, 4(1). https://doi.org/10.1038/s42005-021-00675-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free