Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk

73Citations
Citations of this article
189Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The use of Cardiovascular Disease (CVD) risk estimation scores in primary prevention has long been established. However, their performance still remains a matter of concern. The aim of this study was to explore the potential of using ML methodologies on CVD prediction, especially compared to established risk tool, the HellenicSCORE. Methods: Data from the ATTICA prospective study (n = 2020 adults), enrolled during 2001-02 and followed-up in 2011-12 were used. Three different machine-learning classifiers (k-NN, random forest, and decision tree) were trained and evaluated against 10-year CVD incidence, in comparison with the HellenicSCORE tool (a calibration of the ESC SCORE). Training datasets, consisting from 16 variables to only 5 variables, were chosen, with or without bootstrapping, in an attempt to achieve the best overall performance for the machine learning classifiers. Results: Depending on the classifier and the training dataset the outcome varied in efficiency but was comparable between the two methodological approaches. In particular, the HellenicSCORE showed accuracy 85%, specificity 20%, sensitivity 97%, positive predictive value 87%, and negative predictive value 58%, whereas for the machine learning methodologies, accuracy ranged from 65 to 84%, specificity from 46 to 56%, sensitivity from 67 to 89%, positive predictive value from 89 to 91%, and negative predictive value from 24 to 45%; random forest gave the best results, while the k-NN gave the poorest results. Conclusions: The alternative approach of machine learning classification produced results comparable to that of risk prediction scores and, thus, it can be used as a method of CVD prediction, taking into consideration the advantages that machine learning methodologies may offer.

Cite

CITATION STYLE

APA

Dimopoulos, A. C., Nikolaidou, M., Caballero, F. F., Engchuan, W., Sanchez-Niubo, A., Arndt, H., … Panagiotakos, D. B. (2018). Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk. BMC Medical Research Methodology, 18(1). https://doi.org/10.1186/s12874-018-0644-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free