An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans

2Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Optogenetics allows the experimental manipulation of excitable cells by a light stimulus without the need for technically challenging and invasive procedures. The high degree of spatial, temporal, and intensity control that can be achieved with a light stimulus, combined with cell type-specific expression of light-sensitive ion channels, enables highly specific and precise stimulation of excitable cells. Optogenetic tools have therefore revolutionized the study of neuronal circuits in a number of models, including Caenorhabditis elegans. Despite the existence of several optogenetic systems that allow spatial and temporal photoactivation of light-sensitive actuators in C. elegans, their high costs and low flexibility have limited wide access to optogenetics. Here, we developed an inexpensive, easy-to-build, modular, and adjustable optogenetics device for use on different microscopes and worm trackers, which we called the OptoArm. Results: The OptoArm allows for single- and multiple-worm illumination and is adaptable in terms of light intensity, lighting profiles, and light color. We demonstrate OptoArm’s power in a population-based multi-parameter study on the contributions of motor circuit cells to age-related motility decline. We found that individual components of the neuromuscular system display different rates of age-dependent deterioration. The functional decline of cholinergic neurons mirrors motor decline, while GABAergic neurons and muscle cells are relatively age-resilient, suggesting that rate-limiting cells exist and determine neuronal circuit ageing. Conclusion: We have assembled an economical, reliable, and highly adaptable optogenetics system which can be deployed to address diverse biological questions. We provide a detailed description of the construction as well as technical and biological validation of our set-up. Importantly, use of the OptoArm is not limited to C. elegans and may benefit studies in multiple model organisms, making optogenetics more accessible to the broader research community.

Cite

CITATION STYLE

APA

Koopman, M., Janssen, L., & Nollen, E. A. A. (2021). An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans. BMC Biology, 19(1). https://doi.org/10.1186/s12915-021-01085-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free