In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance.
CITATION STYLE
Yang, W., Li, C., & Zhou, Y. (2022). A Path Planning Method for Autonomous Vehicles Based on Risk Assessment. World Electric Vehicle Journal, 13(12). https://doi.org/10.3390/wevj13120234
Mendeley helps you to discover research relevant for your work.