Ryanodine receptors (RyRs) reside in microsomal membranes where they gate Ca2+ release in response to changes in the cytosolic Ca2+ concentration. In the osteoclast, a divalent cation sensor, the Ca2+ receptor (CaR), located within the cell's plasma membrane, monitors changes in the extracellular Ca2+ concentration. Here we show that a RyR-like molecule is a functional component of this receptor. We have demonstrated that [3H] ryanodine specifically binds to freshly isolated rat osteoclasts. The binding was displaced by ryanodine itself, the CaR agonist Ni2+ and the RyR antagonist ruthenium red. The latter also inhibited cytosolic Ca2+ elevations induced by Ni2+. In contrast, the responses to Ni2+ were strongly potentiated by an antiserum Ab129 raised to an epitope located within the channel-forming domain of the type II RyR. The antiserum also stained the surface of intact, unfixed, trypan blue-negative osteoclasts. Serial confocal sections and immunogold scanning electron microscopy confirmed a plasma membrane localization of this staining. Antiserum Ab34 directed to a putatively intracellular RyR epitope expectedly did not stain live osteoclasts nor did it potentiate CaR activation. It did, however, stain fixed, permeabilized cells in a distinctive cytoplasmic pattern. We conclude that an RyR-like molecule resides within the osteoclast plasma membrane and plays an important role in extracellular Ca2+ sensing.
CITATION STYLE
Zaidi, M., Shankar, V. S., Tunwell, R., Adebanjo, O. A., Mackrill, J., Pazianas, M., … Lai, F. A. (1995). A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing. Journal of Clinical Investigation, 96(3), 1582–1590. https://doi.org/10.1172/JCI118197
Mendeley helps you to discover research relevant for your work.