Grassmannian flows and applications to nonlinear partial differential equations

5Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We show how solutions to a large class of partial differential equations with nonlocal Riccati-type nonlinearities can be generated from the corresponding linearized equations, from arbitrary initial data. It is well known that evolutionary matrix Riccati equations can be generated by projecting linear evolutionary flows on a Stiefel manifold onto a coordinate chart of the underlying Grassmann manifold. Our method relies on extending this idea to the infinite dimensional case. The key is an integral equation analogous to the Marchenko equation in integrable systems, that represents the coodinate chart map. We show explicitly how to generate such solutions to scalar partial differential equations of arbitrary order with nonlocal quadratic nonlinearities using our approach. We provide numerical simulations that demonstrate the generation of solutions to Fisher–Kolmogorov–Petrovskii–Piskunov equations with nonlocal nonlinearities. We also indicate how the method might extend to more general classes of nonlinear partial differential systems.

Cite

CITATION STYLE

APA

Beck, M., Doikou, A., Malham, S. J. A., & Stylianidis, I. (2018). Grassmannian flows and applications to nonlinear partial differential equations. In Abel Symposia (Vol. 13, pp. 71–98). Springer Heidelberg. https://doi.org/10.1007/978-3-030-01593-0_3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free