Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids

15Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

Three-dimensional (3D) organoid culture recapitulating patient-specific histopathological and molecular diversity offers great promise for precision medicine in cancer. In this study, we established label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer organoids, which were further treated with various concentrations of pharmaceutical agents relevant for the treatment of bladder cancer (i.e., cisplatin, venetoclax). Direct cellular response upon drug treatment was monitored by RMS. Raman spectra of treated and untreated bladder cancer organoids were compared using multivariate data analysis to monitor the impact of drugs on subcellular structures such as nuclei and mitochondria based on shifts and intensity changes of specific molecular vibrations. The effects of different drugs on cell metabolism were assessed by the local autofluo-rophore environment of NADH and FAD, determined by multiexponential fitting of lifetime decays. Data-driven neural network and data validation analyses (k-means clustering) were performed to retrieve additional and non-biased biomarkers for the classification of drug-specific responsiveness. Together, FLIM and RMS allowed for non-invasive and molecular-sensitive monitoring of tumor-drug interactions, providing the potential to determine and optimize patient-specific treatment efficacy.

Cite

CITATION STYLE

APA

Becker, L., Fischer, F., Fleck, J. L., Harland, N., Herkommer, A., Stenzl, A., … Marzi, J. (2022). Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids. International Journal of Molecular Sciences, 23(13). https://doi.org/10.3390/ijms23136956

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free