A Computational Study on Selected Alkaloids as SARS-CoV-2 Inhibitors: PASS Prediction, Molecular Docking, ADMET Analysis, DFT, and Molecular Dynamics Simulations

8Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Despite treatments and vaccinations, it remains difficult to develop naturally occurring COVID-19 inhibitors. Here, our main objective is to find potential lead compounds from the retrieved alkaloids with antiviral and other biological properties that selectively target the main SARS-CoV-2 protease (Mpro), which is required for viral replication. In this work, 252 alkaloids were aligned using Lipinski's rule of five and their antiviral activity was then assessed. The prediction of activity spectrum of substances (PASS) data was used to confirm the antiviral activities of 112 alkaloids. Finally, 50 alkaloids were docked with Mpro. Furthermore, assessments of molecular electrostatic potential surface (MEPS), density functional theory (DFT), and absorption, distribution, metabolism, excretion, and toxicity (ADMET) were performed, and a few of them appeared to have potential as candidates for oral administration. Molecular dynamics simulations (MDS) with a time step of up to 100 ns were used to confirm that the three docked complexes were more stable. It was found that the most prevalent and active binding sites that limit Mpro'sactivity are PHE294, ARG298, and GLN110. All retrieved data were compared to conventional antivirals, fumarostelline, strychnidin-10-one (L-1), 2,3-dimethoxy-brucin (L-7), and alkaloid ND-305B (L-16) and were proposed as enhanced SARS-CoV-2 inhibitors. Finally, with additional clinical or necessary study, it may be able to use these indicated natural alkaloids or their analogs as potential therapeutic candidates.

Cite

CITATION STYLE

APA

Mortuza, M. G., Roni, M. A. H., Kumer, A., Biswas, S., Saleh, M. A., Islam, S., … Akther, F. (2023). A Computational Study on Selected Alkaloids as SARS-CoV-2 Inhibitors: PASS Prediction, Molecular Docking, ADMET Analysis, DFT, and Molecular Dynamics Simulations. Biochemistry Research International, 2023. https://doi.org/10.1155/2023/9975275

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free