Un-mix: Rethinking Image Mixtures for Unsupervised Visual Representation Learning

44Citations
Citations of this article
207Readers
Mendeley users who have this article in their library.

Abstract

The recently advanced unsupervised learning approaches use the siamese-like framework to compare two “views” from the same image for learning representations. Making the two views distinctive is a core to guarantee that unsupervised methods can learn meaningful information. However, such frameworks are sometimes fragile on overfitting if the augmentations used for generating two views are not strong enough, causing the over-confident issue on the training data. This drawback hinders the model from learning subtle variance and fine-grained information. To address this, in this work we aim to involve the soft distance concept on label space in the contrastive-based unsupervised learning task and let the model be aware of the soft degree of similarity between positive or negative pairs through mixing the input data space, to further work collaboratively for the input and loss spaces. Despite its conceptual simplicity, we show empirically that with the solution - Unsupervised image mixtures (Un-Mix), we can learn subtler, more robust and generalized representations from the transformed input and corresponding new label space. Extensive experiments are conducted on CIFAR-10, CIFAR-100, STL-10, Tiny ImageNet and standard ImageNet-1K with popular unsupervised methods SimCLR, BYOL, MoCo V1&V2, SwAV, etc. Our proposed image mixture and label assignment strategy can obtain consistent improvement by 1∼3% following exactly the same hyperparameters and training procedures of the base methods. Code is publicly available at https://github.com/szq0214/Un-Mix.

Cite

CITATION STYLE

APA

Shen, Z., Liu, Z., Liu, Z., Savvides, M., Darrell, T., & Xing, E. (2022). Un-mix: Rethinking Image Mixtures for Unsupervised Visual Representation Learning. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022 (Vol. 36, pp. 2216–2224). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v36i2.20119

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free