Noninvasive assessment and quantification of tumour vascularisation using MRI and CT in a tumour model with modifiable angiogenesis – An animal experimental prospective cohort study

8Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: To investigate vascular-related pathophysiological characteristics of two human lung cancers with modifiable vascularisation using MRI and CT. Methods: Tumour xenografts with modifiable vascularisation were established in 71 rats (approval by the Animal Care Committee was obtained) by subcutaneous transplantation of two human non-small-cell lung cancer (NSCLC) cells (A549, H1299) either alone or co-transplanted with vascular growth promoters. The vascularity of the tumours was assessed noninvasively by MRI diffusion-weighted-imaging (DWI), T2-weighted, and time-of-flight (TOF) sequences) as well as contrast-enhanced CT (CE-CT), using clinical scanners. As a reference standard, histological examinations (CD-31, fluorescent beads) were done after explantation. Results: Microvessel density (MVD) was higher in co-transplanted tumours (171 ± 19 number/mm2) than in non-co-transplanted tumours (111 ± 11 number/mm2; p = 0.002). Co-transplanted tumours showed higher growth rates and larger tumour vessels at TOF-MRI as well as larger necrotic areas at CE-CT. In co-transplanted tumours, DWI revealed higher cellularity (lower minimal ADCdiff 166 ± 15 versus 346 ± 27 mm2/s × 10−6; p < 0.001), highly necrotic areas (higher maximal ADCdiff 1695 ± 65 versus 1320 ± 59 mm2/s × 10−6; p < 0.001), and better-perfused tumour stroma (higher ADCperf 723 ± 36 versus 636 ± 51 mm2/s × 10−6; p = 0.005). Significant correlations were found using qualitative and quantitative parameters: maximal ADCperf and MVD (r = 0.326); maximal ADCdiff and relative necrotic volume on CE-CT (r = 0.551); minimal ADCdiff and MVD (r = −0.395). Conclusions: Pathophysiological differences related to vascular supply in two human lung cancer cell lines with modifiable vascularity are quantifiable with clinical imaging techniques. Imaging parameters of vascularisation correlated with the results of histology. DWI was able to characterise both the extent of necrosis and the level of perfusion.

Cite

CITATION STYLE

APA

Mirus, M., Tokalov, S. V., Wolf, G., Heinold, J., Prochnow, V., & Abolmaali, N. (2017). Noninvasive assessment and quantification of tumour vascularisation using MRI and CT in a tumour model with modifiable angiogenesis – An animal experimental prospective cohort study. European Radiology Experimental, 1(1). https://doi.org/10.1186/s41747-017-0014-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free