Polarons in dielectric crystals play a crucial role for applications in integrated electronics and optoelectronics. In this work, we use density-functional theory and Green's function methods to explore the microscopic structure and spectroscopic signatures of electron polarons in lithium niobate (LiNbO3). Total-energy calculations and the comparison of calculated electron paramagnetic resonance data with available measurements reveal the formation of bound polarons at NbLi antisite defects with a quasi-Jahn-Teller distorted, tilted configuration. The defect-formation energies further indicate that (bi)polarons may form not only at NbLi antisites but also at structures where the antisite Nb atom moves into a neighboring empty oxygen octahedron. Based on these structure models, and on the calculated charge-transition levels and potential-energy barriers, we propose two mechanisms for the optical and thermal splitting of bipolarons, which provide a natural explanation for the reported two-path recombination of bipolarons. Optical-response calculations based on the Bethe-Salpeter equation, in combination with available experimental data and new measurements of the optical absorption spectrum, further corroborate the geometries proposed here for free and defect-bound (bi)polarons.
CITATION STYLE
Schmidt, F., Kozub, A. L., Biktagirov, T., Eigner, C., Silberhorn, C., Schindlmayr, A., … Gerstmann, U. (2020). Free and defect-bound (bi)polarons in LiNbO3: Atomic structure and spectroscopic signatures from ab initio calculations. Physical Review Research, 2(4). https://doi.org/10.1103/PhysRevResearch.2.043002
Mendeley helps you to discover research relevant for your work.