The construction and retrieval of indoor maps are important for indoor positioning and navigation. It is necessary to ensure a good user experience while meeting real-time requirements. Unlike outdoor maps, indoor space is limited, and the relationship between indoor objects is complex which would result in an uneven indoor data distribution and close relationship between the data. A data storage model based on the octree scene segmentation structure was proposed in this paper initially. The traditional octree structure data storage model has been improved so that the data could be backtracked. The proposed method will solve the problem of partition lines within the range of the object data and improve the overall storage efficiency. Moreover, a data retrieval algorithm based on octree storage structure was proposed. The algorithm adopts the idea of "searching for a point, points around the searched point are within the searching range."Combined with the octree neighbor retrieval methods, the closure constraints are added. Experimental results show that using the improved octree storage structure, the retrieval cost is 1/8 of R-tree. However, by using the neighbor retrieval, it improved the search efficiency by about 27% on average. After adding the closure constraint, the retrieval efficiency increases by 25% on average.
CITATION STYLE
Yu, X., Wang, H., Lv, H., & Fu, J. (2020). An Optimization Technique of the 3D Indoor Map Data Based on an Improved Octree Structure. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/4315850
Mendeley helps you to discover research relevant for your work.