Effect of Packing Nonuniformity at the Fiber Bundle–Case Interface on Performance of Hollow Fiber Membrane Gas Separation Modules

7Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

High-fidelity simulations of momentum and mass transfer within a hollow fiber gas separation membrane module are here reported. The simulations capture the potential detrimental effects of poor fiber packing at the bundle–case interface on fluid distribution and performance. Results are presented for both circular and planar fiber bundles. The length over which bundle–case gaps affects flow is determined. The length increases dramatically with increasing fiber packing fraction. As the packing fraction approaches 0.6, the impact extends over the entire bundle diameter for small modules (<1000 fibers). The results clearly demonstrate the detrimental effect of poor packing along the case and can be used to develop module manufacturing guidelines. To reduce computational costs, an equivalent planar bundle module approximation is developed. The approximate simulations agree well with results from full 3-D simulations and can reduce computational costs without sacrificing fidelity.

Cite

CITATION STYLE

APA

Sun, L., Panagakos, G., & Lipscomb, G. (2022). Effect of Packing Nonuniformity at the Fiber Bundle–Case Interface on Performance of Hollow Fiber Membrane Gas Separation Modules. Membranes, 12(11). https://doi.org/10.3390/membranes12111139

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free