The adsorption behavior of 2-nitrophenol (2-NP) and 2,4-dinitrophenol (2,4-DNP) on expanded perlite (EP) at equilibrium and kinetic conditions was investigated. The experimental equilibrium data were interpreted by Langmuir, Freundlich, Redlich-Peterson, Temkin and the multilayer isotherm models. Both the Temkin and the multilayer models gave the most satisfactory representation of the experimental data for 2-NP sorption on EP covering the whole concentration range, presuming high initial sorption rate, presence of adsorbent-adsorbate chemical interactions and multilayer adsorption, as the basic characteristics featuring the equilibrium behavior of the system studied. The experimental kinetic results were analyzed by the pseudo-first, pseudo-second order models, Bangham's model, intra-particle diffusion model, and Elovich kinetic equation. The values of the calculated rate, mass transfer parameters and correlation coefficients proved that chemisorptions/intraparticle diffusion could be outlined as the basic rate controlling mechanisms during 2-NP/2,4-DNP sorption on expanded perlite. Uptake of nitrophenols increased in the order 2-NP < 2,4-DNP.
CITATION STYLE
Yaneva, Z., Koumanova, B., & Georgieva, N. (2012). Study of the mechanism of nitrophenols sorption on expanded perlite - Equilibrium and kinetics modelling. Macedonian Journal of Chemistry and Chemical Engineering, 31(1), 101–114. https://doi.org/10.20450/mjcce.2012.61
Mendeley helps you to discover research relevant for your work.