1,3-Butadiene Production Using Ash-Based Catalyst

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The production of 1,3-butadiene from ethanol was carried out using ash as a catalyst in combination with Zr and Mg. The catalytic experiments were carried out at 350–400 °C with a different weight hourly space velocity (WHSV). The catalysts that were used were combined as follows: Ash, Ash:MgO (weight ratio 1:1), Ash:MgO (1:2), Ash:MgO (1:3), and Ash: MgO/ZrO2 (1:1:1). The characterization of the catalyst was carried out using BET, SEM, XRD, TGA, and XPS, respectively. The yield of 1,3-butadiene using bare ash was 65% at 400 °C and 2.5 h−1 of WHSV. Using the Ash:MgO (1:2) catalyst led to an ethanol conversion rate of 79 % at 350 °C; the yield and selectivity of 1,3-butadiene were 48% and 87.8 %, respectively. Using the Ash:MgO(1:3) catalyst led to a 1,3-butadiene yield of 25% and a selectivity of 82% at 350 °C. The Ash:MgO(1:2) catalyst had a 1,3-butadiene yield of 50% and selectivity of 83%, and the Ash:MgO(1:1) had a 1,3-butadiene yield of 30% and selectivity of 80%, while the Ash:MgO/ZrO2 (1:1:1) catalyst had a 1,3-butadiene yield of 50% and selectivity of 90.8% at 2.5 h−1 of WHSV.

Cite

CITATION STYLE

APA

Bojang, A. A., & Wu, H. S. (2023). 1,3-Butadiene Production Using Ash-Based Catalyst. Catalysts, 13(2). https://doi.org/10.3390/catal13020258

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free