Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress

234Citations
Citations of this article
126Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Salt stress causes oxidative damage and cell death in plants. Plants accumulate proline and glycinebetaine (betaine) to mitigate detrimental effects of salt stress. The aim of this study was to investigate the protective effects of proline and betaine on cell death in NaCl-unadapted tobacco (Nicotiana tabacum) Bright Yellow-2 suspension-cultured cells subjected to salt stress. Salt stress increased reactive oxygen species (ROS) accumulation, lipid peroxidation, nuclear deformation and degradation, chromatin condensation, apoptosis-like cell death and ATP contents. Neither proline nor betaine affected apoptosis-like cell death and G1 phase population, and increased ATP contents in the 200 mM NaCl-stressed cells. However, both of them effectively decreased ROS accumulation and lipid peroxidation, and suppressed nuclear deformation and chromatin condensation induced by severe salt stress. Evans Blue staining experiment showed that both proline and betaine significantly suppressed increment of membrane permeability induced by 200 mM NaCl. Furthermore, among the ROS scavenging antioxidant defense genes studied here, mRNA levels of salicylic acid-binding (SAbind) catalase (CAT) and lignin-forming peroxidase (POX) were found to be increased by proline and betaine under salt stress. It is concluded that both proline and betaine provide a protection against NaCl-induced cell death via decreasing level of ROS accumulation and lipid peroxidation as well as improvement of membrane integrity. © 2008 Elsevier GmbH. All rights reserved.

Cite

CITATION STYLE

APA

Banu, M. N. A., Hoque, M. A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology, 166(2), 146–156. https://doi.org/10.1016/j.jplph.2008.03.002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free