Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling

39Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Decision makers often desire both guidance on the most cost-effective interventions given current knowledge and also the value of collecting additional information to improve the decisions made (i.e., from value of information [VOI] analysis). Unfortunately, VOI analysis remains underused due to the conceptual, mathematical, and computational challenges of implementing Bayesian decision-theoretic approaches in models of sufficient complexity for real-world decision making. In this study, we propose a novel practical approach for conducting VOI analysis using a combination of probabilistic sensitivity analysis, linear regression metamodeling, and unit normal loss integral function - a parametric approach to VOI analysis. We adopt a linear approximation and leverage a fundamental assumption of VOI analysis, which requires that all sources of prior uncertainties be accurately specified. We provide examples of the approach and show that the assumptions we make do not induce substantial bias but greatly reduce the computational time needed to perform VOI analysis. Our approach avoids the need to analytically solve or approximate joint Bayesian updating, requires only one set of probabilistic sensitivity analysis simulations, and can be applied in models with correlated input parameters.

Cite

CITATION STYLE

APA

Jalal, H., Goldhaber-Fiebert, J. D., & Kuntz, K. M. (2015). Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling. Medical Decision Making, 35(5), 584–595. https://doi.org/10.1177/0272989X15578125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free