Large eddy simulation of sediment transport over rippled beds

9Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Wave-induced boundary layer (BL) flows over sandy rippled bottoms are studied using a numerical model that applies a one-way coupling of a "far-field" inviscid flow model to a "near-field" large eddy simulation (LES) Navier-Stokes (NS) model. The incident inviscid velocity and pressure fields force the LES, in which near-field, wave-induced, turbulent bottom BL flows are simulated. A sediment suspension and transport model is embedded within the coupled flow model. The numerical implementation of the various models has been reported elsewhere, where we showed that the LES was able to accurately simulate both mean flow and turbulent statistics for oscillatory BL flows over a flat, rough bed. Here we show that the model accurately predicts the mean velocity fields and suspended sediment concentration for oscillatory flows over full-scale vortex ripples. Tests show that surface roughness has a significant effect on the results. Beyond increasing our insight into wave-induced oscillatory bottom BL physics, sophisticated coupled models of sediment transport such as that presented have the potential to make quantitative predictions of sediment transport and erosion/accretion around partly buried objects in the bottom, which is important for a vast array of bottom deployed instrumentation and other practical ocean engineering problems.

Cite

CITATION STYLE

APA

Harris, J. C., & Grilli, S. T. (2014). Large eddy simulation of sediment transport over rippled beds. Nonlinear Processes in Geophysics, 21(6), 1169–1184. https://doi.org/10.5194/npg-21-1169-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free