A systematic study of the dependence of the magnetization on the magnetic field around the ferromagnetic-paramagnetic phase transition temperature is carried out on La0.7Ca0.3Mn1-xNixO3 (x=0, 0.02, 0.07, and 1) samples synthesized by auto-combustion method. The successful substitution of Mn3+ ions by Ni2+ ions in the La0.7Ca0.3MnO3 lattice is corroborated by X-ray diffraction technique. Banerjees criteria, Arrott plots, and the scaling hypothesis are used to analyze the experimental data. It is verified that the Ni-doping increases the operating temperature range for magnetocaloric effect through tuning of the magnetic transition temperature. Probably, the replacement of Mn3+ by Ni2+ ions in the La0.7Ca0.3MnO3 lattice weakens the Mn3+-O-Mn4+ double exchange interaction, which leads to a decrease in the transition temperature and magnetic moment in the samples. The Arrott plots suggest that the phase transition from ferromagnetic to paramagnetic in the nano-sized manganite is of second order. The analysis of the magnetization results show that the maximum magnetic entropy changes observed for x=0, 0.02, 0.07, and 0.1 compositions are 0.85, 0.77, 0.63, and 0.59 J/kg K, under a magnetic field of 1.5 T. These values indicate that the magnetic entropy change achieved for La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method is higher than those reported for other manganites with comparable Ni-doping levels but synthesized by standard solid state reaction. It is also observed that the addition of Ni2+ increases the value of the relative cooling power as compared to that of the parent compound. The highest value of this parameter (∼60 J/kg) is found for a Ni-doping level of 2 % around 230 K in a field of 1.5 T.
CITATION STYLE
Gómez, A., Chavarriaga, E., Supelano, I., Parra, C. A., & Moran, O. (2018). Evaluation of the magnetocaloric response of nano-sized La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method. AIP Advances, 8(5). https://doi.org/10.1063/1.5007284
Mendeley helps you to discover research relevant for your work.