Background: Anti-aquaporin 4 (AQP4) antibody (AQP4-Ab) is involved in the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD). However, the mechanism involved in AQP4-Ab production remains unclear. Methods: We analyzed the immunophenotypes of patients with NMOSD and other neuroinflammatory diseases as well as healthy controls (HC) using flow cytometry. Transcriptome analysis of B cell subsets obtained from NMOSD patients and HCs was performed. The differentiation capacity of B cell subsets into antibody-secreting cells was analyzed. Results: The frequencies of switched memory B (SMB) cells and plasmablasts were increased and that of naïve B cells was decreased in NMOSD patients compared with relapsing–remitting multiple sclerosis patients and HC. SMB cells from NMOSD patients had an enhanced potential to differentiate into antibody-secreting cells when cocultured with T peripheral helper cells. Transcriptome analysis revealed that the profiles of B cell lineage transcription factors in NMOSD were skewed towards antibody-secreting cells and that IL-2 signaling was upregulated, particularly in naïve B cells. Naïve B cells expressing CD25, a receptor of IL-2, were increased in NMOSD patients and had a higher potential to differentiate into antibody-secreting cells, suggesting CD25+ naïve B cells are committed to differentiate into antibody-secreting cells. Conclusions: To the best of our knowledge, this is the first study to demonstrate that B cells in NMOSD patients are abnormally skewed towards antibody-secreting cells at the transcriptome level during the early differentiation phase, and that IL-2 might participate in this pathogenic process. Our study indicates that CD25+ naïve B cells are a novel candidate precursor of antibody-secreting cells in autoimmune diseases.
CITATION STYLE
Hoshino, Y., Noto, D., Sano, S., Tomizawa, Y., Yokoyama, K., Hattori, N., & Miyake, S. (2022). Dysregulated B cell differentiation towards antibody-secreting cells in neuromyelitis optica spectrum disorder. Journal of Neuroinflammation, 19(1). https://doi.org/10.1186/s12974-021-02375-w
Mendeley helps you to discover research relevant for your work.