Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V). © 2013 Ji et al.; licensee Springer.
CITATION STYLE
Ji, S., Chang, I., Lee, Y. H., Park, J., Paek, J. Y., Lee, M. H., & Cha, S. W. (2013). Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition. Nanoscale Research Letters, 8(1), 1–7. https://doi.org/10.1186/1556-276X-8-48
Mendeley helps you to discover research relevant for your work.