The electronic conductive metal-organic frameworks (EC-MOFs) based on a single ligand are not suitable for the accurate detection of bisphenol A (BPA) due to the limitations of their electron-transfer-based sensing mechanism. To overcome this drawback, we developed EC-MOFs with novel dual-ligands, 2,3,6,7,10,11-hexahydroxy-sanya-phenyl (HHTP) and tetrahydroxy 1,4-quinone (THQ), and metal ions. A new class of 2D π-conjugation-based EC-MOFs (M-(HHTP)(THQ)) was synthesized by a self-assemble technique. Its best member (Cu-(HHTP)(THQ)) was selected and combined with reduced graphene (rGO) to form a Cu-(HHTP)(THQ)@rGO composite, which was thoroughly characterized by X-ray diffraction, field scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Cu-(HHTP)(THQ)@rGO was drop-cast onto a glassy carbon electrode (GCE) to obtain a sensor for BPA detection. Cyclic voltammetry and electrochemical impedance tests were used to eval-uate the electrode performance. The oxidation current of BPA on the Cu-(HHTP)(THQ)@rGO/GCE was substantially higher than on unmodified GCE, which could be explained by a synergy between Cu-(HHTP)(THQ) (which provided sensing and adsorption) and rGO (which provided fast electron conductivity and high surface area). Cu-(HHTP)(THQ)@rGO/GCE exhibited a linear detection range for 0.05–100 µmol·L−1 of BPA with 3.6 nmol·L−1 (S/N = 3) detection limit. We believe that our novel electrode and BPA sensing method extends the application perspectives of EC-MOFs in the electrocatalysis and sensing fields.
CITATION STYLE
Ye, R. H., Chen, J. Y., Huang, D. H., Wang, Y. J., & Chen, S. (2022). Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Biosensors, 12(6). https://doi.org/10.3390/bios12060367
Mendeley helps you to discover research relevant for your work.