Distributing Multipartite Entanglement over Noisy Quantum Networks

26Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

A quantum internet aims at harnessing networked quantum technologies, namely by distributing bipartite entanglement between distant nodes. However, multipartite entanglement between the nodes may empower the quantum internet for additional or better applications for communications, sensing, and computation. In this work, we present an algorithm for generating multipartite entanglement between different nodes of a quantum network with noisy quantum repeaters and imperfect quantum memories, where the links are entangled pairs. Our algorithm is optimal for GHZ states with 3 qubits, maximising simultaneously the final state fidelity and the rate of entanglement distribution. Furthermore, we determine the conditions yielding this simultaneous optimality for GHZ states with a higher number of qubits, and for other types of multipartite entanglement. Our algorithm is general also in the sense that it can optimize simultaneously arbitrary parameters. This work opens the way to optimally generate multipartite quantum correlations over noisy quantum networks, an important resource for distributed quantum technologies.

Cite

CITATION STYLE

APA

Bugalho, L., Coutinho, B. C., Monteiro, F. A., & Omar, Y. (2023). Distributing Multipartite Entanglement over Noisy Quantum Networks. Quantum, 7, 920. https://doi.org/10.22331/q-2023-02-09-920

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free