T-cell receptor (TCR)–modified T-cell therapies have shown promise against solid tumors, but overall therapeutic benefits have been modest due in part to suboptimal T-cell persistence and activation in vivo, alongside potential tumor antigen escape. In this study, we demonstrate an approach to enhance the in vivo persistence and function of TCR T cells through combination with Amphiphile (AMP) vaccination including cognate TCR T peptides. AMP modification improves lymph node targeting of conjugated tumor immunogens and adjuvants, thereby coordinating a robust T cell–activating endogenous immune response. AMP vaccine combination with TCR T-cell therapy led to complete eradication and durable responses against established murine solid tumors refractory to TCR T-cell monotherapy. Enhanced antitumor efficacy was correlated with simultaneous in vivo invigoration of adoptively transferred TCR T cells and in situ expansion of the endogenous antitumor T-cell repertoire. Long-term protection against tumor recurrence in AMP-vaccinated mice was associated with antigen spreading to additional tumor-associated antigens not targeted by vaccination. AMP vaccination further correlated with pro-inflammatory lymph node transcriptional reprogramming and increased antigen presenting–cell maturation, resulting in TCR T-cell expansion and functional enhancement in lymph nodes and solid tumor parenchyma without lymphodepletion. In vitro evaluation of AMP peptides with matched human TCR T cells targeting NY-ESO-1, mutant KRAS, and HPV16 E7 illustrated the clinical potential of AMP vaccination to enhance human TCR T-cell proliferation, activation, and antitumor activity. Taken together, these studies provide rationale and evidence to support clinical evaluation of combining AMP vaccination with TCR T-cell therapies to augment antitumor activity.
CITATION STYLE
Drakes, D. J., Abbas, A. M., Shields, J., Steinbuck, M. P., Jakubowski, A., Seenappa, L. M., … DeMuth, P. C. (2024). Lymph Node–Targeted Vaccine Boosting of TCR T-cell Therapy Enhances Antitumor Function and Eradicates Solid Tumors. Cancer Immunology Research, 12(2), 214–231. https://doi.org/10.1158/2326-6066.CIR-22-0978
Mendeley helps you to discover research relevant for your work.