Relationship between Football-Specific Training Characteristics and Tibial Bone Adaptation in Male Academy Football Players

2Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

We examined the relationship between football-specific training and changes in bone structural properties across a 12-week period in 15 male football players aged 16 years (Mean ± 1 SD = 16.6 ± 0.3 years) that belonged to a professional football academy. Tibial scans were performed at 4%, 14% and 38% sites using peripheral quantitative computed tomography immediately before and 12 weeks after increased football-specific training. Training was analysed using GPS to quantify peak speed, average speed, total distance and high-speed distance. Analyses were conducted with bias-corrected and accelerated bootstrapped 95% confidence intervals (BCa 95% CI). There were increases in bone mass at the 4% (mean ∆ = 0.15 g, BCa 95% CI = 0.07, 0.26 g, g = 0.72), 14% (mean ∆ = 0.04 g, BCa 95% CI = 0.02, 0.06 g, g = 1.20), and 38% sites (mean ∆ = 0.03 g, BCa 95% CI = 0.01, 0.05 g, g = 0.61). There were increases in trabecular density (4%), (mean ∆ = 3.57 mg·cm−3, BCa 95% CI = 0.38, 7.05 mg·cm−3, g = 0.53), cortical dentsity (14%) (mean ∆ = 5.08 mg·cm−3, BCa 95% CI = 0.19, 9.92 mg·cm−3, g = 0.49), and cortical density (38%) (mean ∆ = 6.32 mg·cm−3, BCa 95% CI = 4.31, 8.90 mg·cm−3, g = 1.22). Polar stress strain index (mean ∆ = 50.56 mm3, BCa 95% CI = 10.52, 109.95 mm3, g = 0.41), cortical area (mean ∆ = 2.12 mm2, BCa 95% CI = 0.09, 4.37 mm2, g = 0.48) and thickness (mean ∆ = 0.06 mm, BCa 95% CI = 0.01, 0.13 mm, g = 0.45) increased at the 38% site. Correlations revealed positive relationships between total distance and increased cortical density (38%) (r = 0.39, BCa 95% CI = 0.02, 0.66), and between peak speed and increased trabecular density (4%) (r = 0.43, BCa 95% CI = 0.03, 0.73). There were negative correlations between total (r = −0.21, BCa 95% CI = −0.65, −0.12) and high-speed distance (r = −0.29, BCa 95% CI = −0.57, −0.24) with increased polar stress strain index (38%). Results suggest that despite football training relating to increases in bone characteristics in male academy footballers, the specific training variables promoting adaptation over a 12-week period may vary. Further studies conducted over a longer period are required to fully elucidate the time-course of how certain football-specific training characteristics influence bone structural properties.

Author supplied keywords

Cite

CITATION STYLE

APA

Varley, I., Sale, C., Greeves, J. P., Morris, J. G., Sunderland, C., & Saward, C. (2023). Relationship between Football-Specific Training Characteristics and Tibial Bone Adaptation in Male Academy Football Players. Sports, 11(4). https://doi.org/10.3390/sports11040086

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free