Inhibition of matrix metalloproteinases minimizes hepatic microvascular injury in response to acetaminophen in mice

49Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

The acetaminophen (APAP)-induced hepatic centrilobular necrosis is preceded by hepatic microcirculatory dysfunction including the infiltration of erythrocytes into the space of Disse. The purpose of this study was to examine the involvement of matrix metalloproteinases (MMPs) in the hepatic microvascular injury elicied by APAP. Male C57B1/6 mice were pretreated with 2-[(4-biphenylsulfonyl) amino]-3-phenyl-propionic acid, an MMP-2/MMP-9 inhibitor (5 mg/kg, ip) 30 min before oral gavage with 600 mg/kg of APAP. The hepatic microvasculature in anesthetized mice was observed using established in vivo microscopic methods 2 and 6 h after APAP. The levels of mRNAs and activities of MMP-2 and MMP-9 in the liver were increased from 1 h through 6 h after APAP gavage. APAP increased alanine transferase (ALT) levels (41.1-fold) and resulted in centrilobular hemorrhagic necrosis at 6 h. Pretreatment with 2-[(4-biphenylsulfonyl) amino]-3-phenylpropionic acid attenuated ALT values by 71% as well as the necrosis. APAP decreased the numbers of perfused sinusoids in centrilobular regions by 30% and increased the area occupied by infiltrated erythrocytes into Disse space. 2-[(4-Biphenylsulfonyl) amino]-3phenyl-propionic acid restored the sinusoidal perfusion to 90% of control levels and minimized extrasinusoidal area occupied by erythrocytes. The present study showed that increased MMPs during APAP intoxication are associated with hepatocellular damage and with hepatic microcirculatory dysfunction including impaired sinusoidal perfusion and infiltration of erythrocytes in Disse space. 2-[(4-Biphenylsulfonyl) amino]-3-phenyl-propionic acid attenuated APAP-induced parenchymal and microvascular injury. These results suggest that MMPs participate in APAP hepatotoxicity mediated by sinusoidal endothelial cell injury, which results in impairment of microcirculation. © Society of Toxicology 2005; all rights reserved.

Cite

CITATION STYLE

APA

Ito, Y., Abril, E. R., Bethea, N. W., & McCuskey, R. S. (2005). Inhibition of matrix metalloproteinases minimizes hepatic microvascular injury in response to acetaminophen in mice. Toxicological Sciences, 83(1), 190–196. https://doi.org/10.1093/toxsci/kfh291

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free