Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Both Generate Superoxide/H2O2 in a Side Reaction and Each Could Contribute to Oxidative Stress in Mitochondria

14Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.
Get full text

Abstract

According to recent findings, the human 2-oxoglutarate dehydrogenase complex (hOGDHc) could be an important source of the reactive oxygen species in the mitochondria and could contribute to mitochondrial abnormalities associated with multiple neurodegenerative diseases, including Alzheimer’s disease, Huntington disease, and Parkinson’s disease. The human 2-oxoadipate dehydrogenase (hE1a) is a novel protein, which is encoded by the DHTKD1 gene. Both missence and nonsense mutations were identified in the DHTKD1 that lead to alpha-aminoadipic and alpha-oxoadipic aciduria, a metabolic disorder with a wide variety of the neurological abnormalities, and Charcot-Marie-Tooth disease type 2Q, an inherited neurological disorder affecting the peripheral nervous system. Recently, the rare pathogenic mutations in DHTKD1 and an increased H2O2 production were linked to the genetic ethiology of Eosinophilic Esophagitis (EoE), a chronic allergic inflammatory esophageal disorder. In view of the importance of hOGDHc in the tricarboxylic acid cycle (TCA cycle) and hE1a on the l-lysine, l-hydroxylysine and l-tryptophan degradation pathway in mitochondria, and to enhance our current understanding of the mechanism of superoxide/H2O2 generation by hOGDHc, and by human 2-oxoadipate dehydrogenase complex (hOADHc), this review focuses on several novel and unanticipated recent findings in vitro that emerged from the Jordan group’s research. Most significantly, the hE1o and hE1a now join the hE3 as being able to generate the superoxide/H2O2 in mitochondria.

Cite

CITATION STYLE

APA

Jordan, F., Nemeria, N., & Gerfen, G. (2019). Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Both Generate Superoxide/H2O2 in a Side Reaction and Each Could Contribute to Oxidative Stress in Mitochondria. Neurochemical Research, 44(10), 2325–2335. https://doi.org/10.1007/s11064-019-02765-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free