Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands

9Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

The reaction between [PtCl2(L-L)] (L-L = dppe, dppp, dppb, dppf, Phen and Bipy) or [PtCl2(PPh3)2] with 1-benzyl-3-phenylthiourea (H2BPT) in a basic medium (CHCl3/EtOH) created new coordinated square planner Pt(II) complexes with [Pt(BPT)(L-L)] (1–4,6,7) and [Pt(BPT)(PPh3)2] (5) types. These complexes were fully characterized by analytical and spectroscopic techniques (i.e., IR, UV. Vis., 1H, and 31P NMR). The results indicated that the thiourea derivative ligand act as a dianion ligand bonded through both S and N atoms in a chelating mode or as a mono-anion ligand coordinated through a sulfur atom with Pt(II) ion. Cytotoxicity activity was performed by the MTT assay to determine anti-cancer activities against MCF-7 breast cancer cells. The study indicated that IC50 values for MCF-7 cells were 10.96–78.90 µM. Additionally, the complexes [Pt(BPT)(dppe)] (1), [Pt(BPT)(PPh3)2] (5), and [Pt(BPT)2(Bipy)] (7) were investigated theoretically, where their quantum parameters were evaluated using the Gaussian 09 program using the theory of B3LYP/Def2TZVP//B3LYP/Lanl2dz. The calculation results confirmed the optimized structures of the complexes square planar geometry. However, the calculated bond lengths and angles showed a slightly distorted square planar geometry due to the trans influence of the sulfur atom. Additionally, complexes of [Pt(BPT)(dppe)] (1) and [Pt(BPT)(PPh3)2] (5) showed higher stability compared to [Pt(BPT)2(Bipy)] (7), which can be attributed to the higher back-donation of (1) and (5) complexes. Furthermore, among the three complexes, the [Pt(BPT)2(Bipy)] (7) complex possessed the lowest HOMO–LUMO gap, which may be a good candidate as the photo-catalyst material.

Cite

CITATION STYLE

APA

Mohamed, D. S., Al-Jibori, S. A., Behjatmanesh-Ardakani, R., Faihan, A. S., Yousef, T. A., Alhamzani, A. G., … Hsiao, B. S. (2023). Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands. Inorganics, 11(3). https://doi.org/10.3390/inorganics11030125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free