Indonesia merupakan negara dengan keanekaragaman hayati terbesar kedua di dunia setelah Brazil. Indonesia memiliki sekitar 25.000 spesies tumbuhan dan 400.000 jenis hewan dan ikan. Diperkirakan 8.500 spesies ikan hidup di perairan Indonesia atau merupakan 45% dari jumlah spesies yang ada di dunia, dengan sekitar 7.000an adalah spesies ikan laut. Untuk menentukan berapa jumlah spesies tersebut dibutuhkan suatu keahlian di bidang taksonomi. Dalam pelaksanaannya mengidentifikasi suatu jenis ikan bukanlah hal yang mudah karena memerlukan suatu metode dan peralatan tertentu, juga pustaka mengenai taksonomi. Pemrosesan video atau citra pada data ekosistem perairan yang dilakukan secara otomatis mulai dikembangkan. Dalam pengembangannya, proses deteksi dan identifikasi spesies ikan menjadi suatu tantangan dibandingkan dengan deteksi dan identifikasi pada objek yang lain. Metode deep learning yang berhasil dalam melakukan klasifikasi objek pada citra mampu untuk menganalisa data secara langsung tanpa adanya ekstraksi fitur pada data secara khusus. Sistem tersebut memiliki parameter atau bobot yang berfungsi sebagai ektraksi fitur maupun sebagai pengklasifikasi. Data yang diproses menghasilkan output yang diharapkan semirip mungkin dengan data output yang sesungguhnya. CNN merupakan arsitektur deep learning yang mampu mereduksi dimensi pada data tanpa menghilangkan ciri atau fitur pada data tersebut. Pada penelitian ini akan dikembangkan model hybrid CNN (Convolutional Neural Networks) untuk mengekstraksi fitur dan beberapa algoritma klasifikasi untuk mengidentifikasi spesies ikan. Algoritma klasifikasi yang digunakan pada penelitian ini adalah : Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbor (KNN), Random Forest, Backpropagation.
CITATION STYLE
Azis, A. (2020). IDENTIFIKASI JENIS IKAN MENGGUNAKAN MODEL HYBRID DEEP LEARNING DAN ALGORITMA KLASIFIKASI. Sebatik, 24(2). https://doi.org/10.46984/sebatik.v24i2.1057
Mendeley helps you to discover research relevant for your work.