Degradation of misfolded or tightly regulated proteins in the endoplasmic reticulum (ER) is performed by the cytosolic ubiquitin- proteasome system and therefore requires their prior transport back to the cytosol. Here, we report on the extraction and degradation mechanism of a polytopic membrane protein. Rapid proteasomal degradation of a mutated form of the ATP-binding cassette transporter Pdr5 retained in the ER is initialized at the lumenal face of the ER membrane. Using different antibodies directed against the cytosolic tails or a lumenal loop of the transmembrane protein, it could be demonstrated that the turnover of Pdr5* demands the concerted action of both the Sec61 translocon and the ubiquitin- proteasome system. We observed a stabilization of the entire molecule within the ER membrane in yeast mutants characterized by a reduced translocation capacity or by functionally attenuated proteasomes. Moreover, no degradation intermediates were detected in any of the mutants that impede degradation of Pdr5*. Therefore, initial steps are rate-limiting for cleavage and mutations that impede downstream events prevent initiation of the process. Our data suggest that ER degradation is a mechanistically highly integrated process, requiring the combined operation of components of the degradation system acting at the lumenal face of the ER membrane, the Sec61 translocon, and the ubiquitin-proteasome system.
CITATION STYLE
Plemper, R. K., Egner, R., Kuchler, K., & Wolf, D. H. (1998). Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. Journal of Biological Chemistry, 273(49), 32848–32856. https://doi.org/10.1074/jbc.273.49.32848
Mendeley helps you to discover research relevant for your work.