El artículo tiene como objetivo el desarrollo de un modelo que permite predecir en forma personalizada los ejercicios que puede resolver un estudiante, y por otro lado los que no puede resolver. El modelo está basado en una serie de factores que influye en los ritmos de aprendizaje de los estudiantes. El curso que se utilizó como experimento en el proyecto es el manejo de funciones en hojas de cálculo. Para el desarrollo del proceso se ha utilizado la metodología de minería de datos KDD (Knowledge Discovery in Databases) y para el modelo se ha utilizado redes neuronales artificiales con aprendizaje hacia atrás (Backpropagation), el cual es un algoritmo de aprendizaje supervisado. El modelo se alimenta con datos como sexo, edad, grado académico, nivel de instrucción de los padres, tipo de colegio, calificaciones previas de los temas que el estudiante obtiene mientras avanza en el curso. El enfoque de la investigación es de corte cuantitativo, experimental, de tipo aplicada y la población estuvo representada por 85 estudiantes. El resultado muestra que el modelo logra una probabilidad del 72% de precisión al predecir la asignación de ejercicios a los estudiantes según sus características. Los ejercicios que no pueden ser resueltos se les anexa una ayuda para su mejor comprensión y resolución.
CITATION STYLE
Saire Peralta, E. A., & Velarde Allazo, E. A. (2023). Modelo clasificador para personalizar ejercicios propuestos a estudiantes utilizando redes neuronales artificiales. PUBLICACIONES, 53(2), 89–124. https://doi.org/10.30827/publicaciones.v53i2.26818
Mendeley helps you to discover research relevant for your work.