A series of 100-year extreme geoelectric field and geomagnetically induced current (GIC) scenarios are explored by taking into account the key geophysical factors associated with the geomagnetic induction process. More specifically, we derive explicit geoelectric field temporal profiles as a function of ground conductivity structures and geomagnetic latitudes. We also demonstrate how the extreme geoelectric field scenarios can be mapped into GIC. Generated statistics indicate 20 V/km and 5 V/km 100-year maximum 10-s geoelectric field amplitudes at high-latitude locations with poorly conducting and well-conducting ground structures, respectively. We show that there is an indication that geoelectric field magnitudes may experience a dramatic drop across a boundary at about 40°-60° of geomagnetic latitude. We identify this as a threshold at about 50° of geomagnetic latitude. The sub-threshold geoelectric field magnitudes are about an order of magnitude smaller than those at super-threshold geomagnetic latitudes. Further analyses are required to confirm the existence and location of the possible latitude threshold. The computed extreme GIC scenarios can be used in further engineering analyses that are needed to quantify the geomagnetic storm impact on conductor systems such as high-voltage power transmission systems. To facilitate further work on the topic, the digital data for generated geoelectric field scenarios are made publicly available. Copyright 2012 by the American Geophysical Union.
CITATION STYLE
Pulkkinen, A., Bernabeu, E., Eichner, J., Beggan, C., & Thomson, A. W. P. (2012). Generation of 100-year geomagnetically induced current scenarios. Space Weather, 10(4). https://doi.org/10.1029/2011SW000750
Mendeley helps you to discover research relevant for your work.