New Chelate Resins Prepared with Direct Red 23 for Cd2+, Ni2+, Cu2+ and Pb2+ Removal

6Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

In this paper, two chelate resins prepared by a simple procedure were used for the removal of Cd2+, Ni2+, Cu2+, and Pb2+ (M2+) from aqueous solutions. Amberlite IRA 402 strongly basic anion exchange resin in Cl− form (IRA 402 (Cl−) together with Amberlite XAD7HP acrylic ester co-polymer (XAD7HP) were functionalized with chelating agent Direct red 23 (DR 23). The chelate resins (IRA 402-DR 23 and XAD7HP-DR 23) were obtained in batch mode. The influence of interaction time, pH and the initial concentration of DR 23 solution was investigated using UV-Vis spectrometry. The time necessary to reach equilibrium was 90 min for both resins. A negligible effect of adsorption capacity (Qe) was obtained when the DR 23 solution was adjusted at a pH of 2 and 7.9. The Qe of the XAD7HP resin (27 mg DR 23/g) is greater than for IRA 402 (Cl−) (21 mg DR 23/g). The efficiency of chelating resins was checked via M2+ removal determined by the atomic adsorption spectrometry method (AAS). The M2+ removal by the IRA 402-DR 23 and XAD7HP-DR 23 showed that the latter is more efficient for this propose. As a consequence, for divalent ions, the chelated resins followed the selectivity sequence: Cd2+ > Cu2+ > Ni2+ > Pb2+. Additionally, Cd2+, Cu2+ and Ni2+ removal was fitted very well with the Freundlich model in terms of height correlation coefficient (R2), while Pb2+ was best fitted with Langmuir model for IRA 402-DR 23, the Cu2+ removal is described by the Langmuir model, and Cd2+, Ni2+ and Pb2+ removal was found to be in concordance with the Freundlich model for XAD7HP-DR 23. The M2+ elution from the chelate resins was carried out using 2 M HCl. The greater M2+ recovery from chelating resins mass confirmed their sustainability. The chelate resins used before and after M2+ removal by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were evaluated.

Cite

CITATION STYLE

APA

Marin, N. M., Ficai, A., Constantin, L. A., Motelica, L., & Trusca, R. (2022). New Chelate Resins Prepared with Direct Red 23 for Cd2+, Ni2+, Cu2+ and Pb2+ Removal. Polymers, 14(24). https://doi.org/10.3390/polym14245523

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free