Diffusion of lexical change in social media

151Citations
Citations of this article
222Readers
Mendeley users who have this article in their library.

Abstract

Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity - especially with regard to race - plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified ''netspeak'' dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.

Cite

CITATION STYLE

APA

Eisenstein, J., O’Connor, B., Smith, N. A., & Xing, E. P. (2014). Diffusion of lexical change in social media. PLoS ONE, 9(11). https://doi.org/10.1371/journal.pone.0113114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free