We analyse the lateral heterogeneity scales of recent upper mantle tomographic shear velocity (Vs) global and regional models. Our goal is to constrain the spherical harmonics power spectrum over the largest possible range of scales to get an estimate of the strength and statistical distribution of both long and small-scale structure. We use a spherical multitaper method to obtain high quality power spectral estimates from the regional models. After deconvolution of the employed taper functions, we combine global and regional spectral estimates from scales of 20 000 to around 200 km (degree 100). In contrast to previous studies that focus on linear power spectral densities, we interpret the logarithmic power per harmonic degree l as heterogeneity strength at a particular depth and horizontal scale. Throughout the mantle, we observe in recent global models, that their low degree spectrum is anisotropic with respect to Earth's rotation axis. We then constrain the uppermost mantle spectrum from global and regional models. Their power spectra transfer smoothly into each other in overlapping spectral bands, and model correlation is in general best in the uppermost 250 km (i.e. the 'heterosphere'). In Europe, we see good correlation from the largest scales down to features of about 500 km. Detailed analysis and interpretation of spectral shape in this depth range shows that the heterosphere has several characteristic length scales and varying spectral decay rates. We interpret these as expressions of different physical processes. At larger depths, the correlation between different models drops, and the power spectrum exhibits strong small scale structure whose location and strength is not as well resolved at present. The spectrum also has bands with elevated power that likely correspond to length scales that are enhanced due to the inversion process.
CITATION STYLE
Meschede, M., & Romanowicz, B. (2015). Lateral heterogeneity scales in regional and global upper mantle shear velocity models. Geophysical Journal International, 200(2), 1078–1095. https://doi.org/10.1093/gji/ggu424
Mendeley helps you to discover research relevant for your work.