Macroscopic relations for microscopic properties at the interface between solid substrates and dense fluids

14Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Strongly confined fluids exhibit inhomogeneous properties due to atomistic structuring in close proximity to a solid surface. State variables and transport coefficients at a solid-fluid interface vary locally and become dependent on the properties of the confining walls. However, the precise mechanisms for these effects are not known as of yet. Here, we make use of nonequilibrium molecular dynamics simulations to scrutinize the local fluid properties at the solid-fluid interface for a range of surface conditions and temperatures. We also derive microscopic relations connecting fluid viscosity and density profiles for dense fluids. Moreover, we propose empirical ready-to-use relations to express the average density and viscosity in the channel as a function of temperature, wall interaction strength, and bulk density or viscosity. Such relations are key to technological applications such as micro-/nanofluidics and tribology but also natural phenomena.

References Powered by Scopus

Fast parallel algorithms for short-range molecular dynamics

38118Citations
N/AReaders
Get full text

Canonical dynamics: Equilibrium phase-space distributions

19396Citations
N/AReaders
Get full text

A unified formulation of the constant temperature molecular dynamics methods

15609Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Modeling of flow in a very small surface separation

36Citations
N/AReaders
Get full text

The role of water models on the prediction of slip length of water in graphene nanochannels

31Citations
N/AReaders
Get full text

Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges

24Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Russo, A., Durán-Olivencia, M. A., Kalliadasis, S., & Hartkamp, R. (2019). Macroscopic relations for microscopic properties at the interface between solid substrates and dense fluids. Journal of Chemical Physics, 150(21). https://doi.org/10.1063/1.5094911

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 9

50%

Researcher 5

28%

Professor / Associate Prof. 2

11%

Lecturer / Post doc 2

11%

Readers' Discipline

Tooltip

Engineering 6

40%

Physics and Astronomy 4

27%

Chemical Engineering 3

20%

Computer Science 2

13%

Save time finding and organizing research with Mendeley

Sign up for free