With the upgrading of logistics demand and the innovation of modern information technology, the smart logistics platform integrates advanced concepts, technologies, and management methods, maximizes the integration of logistics resources and circulation channels, and effectively improves the efficiency of logistics transactions, but its energy consumption problem is particularly prominent. The study of intelligent measurement and monitoring of carbon emissions in smart logistics is of great value to reduce energy consumption, reduce carbon emissions in buildings, and improve the environment. In this paper, by comparing and analyzing the accounting standards of carbon emissions and their calculation methods, the carbon emission factor method is selected as the method to study the carbon emissions of the smart logistics process in this paper. The working principle of each key storage technology in the smart logistics process is analyzed to find out the equipment factors affecting the carbon emission of each storage technology in the smart logistics process, and the carbon emission calculation model of each key storage technology is established separately by using the carbon emission factor method. Meanwhile, according to the development history of energy consumption assessment, the assessment process of different stages from logistics storage energy consumption assessment to smart logistics energy consumption assessment is analyzed, and based on this, a carbon emission energy consumption assessment framework based on 5G shared smart logistics is constructed. This paper applies the supply chain idea to define the smart logistics supply chain, constructs a conceptual model of the smart logistics supply chain considering carbon emissions, and at the same time combines the characteristics of the smart logistics supply chain to analyze the correlation between the carbon emissions of the smart logistics supply chain and the related social, environmental, and economic systems.
CITATION STYLE
Zhang, A., Li, S., Tan, L., Sun, Y., & Yao, F. (2022). Intelligent Measurement and Monitoring of Carbon Emissions for 5G Shared Smart Logistics. Journal of Sensors, 2022. https://doi.org/10.1155/2022/8223590
Mendeley helps you to discover research relevant for your work.