AN EXTREME METALLICITY, LARGE-SCALE OUTFLOW from A STAR-FORMING GALAXY at z ∼ 0.4

75Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

We present a detailed analysis of a large-scale galactic outflow in the circumgalactic medium of a massive (Mh 10 M ∼12.5 M⊙), star-forming (∼6.9 M⊙yr-1), sub-L∗( ∼0.5LB∗) galaxy at z = 0.39853 that exhibits a wealth of metal-line absorption in the spectra of the background quasar Q 0122-003 at an impact parameter of 163 kpc. The galaxy inclination angle (i = 63�) and the azimuthal angle (Φ = 73�) imply that the QSO sightline is passing through the projected minor-axis of the galaxy. The absorption system shows a multiphase, ulticomponent structure with ultra-strong, wide velocity spread O VI (log N = 15.16�0.04, Δv90 = 419 km s-1) and N V (log N = 14.69�0.07, Δv90 = 285 km s-1) lines that are extremely rare in the literature. The highly ionized absorption components are well explained as arising in a low density (∼10-4.2 cm-3), diffuse (∼10 kpc), cool (∼104 K) photoionized gas with a super-solar metallicity ([X H] ≳0.3). From the observed narrowness of the Lyβ profile, the non-detection of S IV absorption, and the presence of strong C IV absorption in the low-resolution FOS spectrum, we rule out equilibrium/non-equilibrium collisional ionization models. The low-ionization photoionized gas with a density of ∼10-2.5 cm-3 and a metallicity of [X H] ≳-1.4 is possibly tracing recycled halo gas. We estimate an outflow mass of ∼2x1010M⊙a mass-flow rate of ∼54 M⊙ yr-1, a kinetic luminosity of ∼9x1041 erg s-1, and a mass loading factor of ∼8 for the outflowing high-ionization gas. These are consistent with the properties of down-the-barrel outflows from infrared-luminous starbursts as studied by Rupke et al. Such powerful, large-scale, metal-rich outflows are the primary means of sufficient mechanical and chemical feedback as invoked in theoretical models of galaxy formation and evolution.

References Powered by Scopus

SExtractor: Software for source extraction

9032Citations
N/AReaders
Get full text

The chemical composition of the sun

7243Citations
N/AReaders
Get full text

How do galaxies get their gas?

1880Citations
N/AReaders
Get full text

Cited by Powered by Scopus

The Circumgalactic Medium

797Citations
N/AReaders
Get full text

THE COS-HALOS SURVEY: ORIGINS of the HIGHLY IONIZED CIRCUMGALACTIC MEDIUM of STAR-FORMING GALAXIES

167Citations
N/AReaders
Get full text

AN HST/COS SURVEY of the LOW-REDSHIFT INTERGALACTIC MEDIUM. I. SURVEY, METHODOLOGY, and OVERALL RESULTS

155Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Muzahid, S., Kacprzak, G. G., Churchill, C. W., Charlton, J. C., Nielsen, N. M., Mathes, N. L., & Trujillo-Gomez, S. (2015). AN EXTREME METALLICITY, LARGE-SCALE OUTFLOW from A STAR-FORMING GALAXY at z ∼ 0.4. Astrophysical Journal, 811(2). https://doi.org/10.1088/0004-637X/811/2/132

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 10

63%

Professor / Associate Prof. 3

19%

Researcher 3

19%

Readers' Discipline

Tooltip

Physics and Astronomy 18

100%

Save time finding and organizing research with Mendeley

Sign up for free