Purpose: Setup uncertainty is a known challenge for stereotactic body radiotherapy planning. Using the internal target volume-based robust optimization was proposed as a more accurate way than the conventional planning target volume-based optimization when considering the robustness criteria. In this study, we aim to investigate the feasibility of internal target volume-based robust optimization in stereotactic body radiotherapy planning using 4-dimensional computed tomography and develop a novel dose–volume histogram band width metric to quantitatively evaluate robustness. Method and Materials: A total of 50 patients with early stage non-small cell lung cancer, who underwent stereotactic body radiotherapy, were retrospectively selected. Each of the 50 patients had 2 stereotactic body radiotherapy plans: one with the conventional planning target volume-based optimization and the other with patient-specific robustly optimized internal target volume and with a uniform 5 mm setup error. These were compared with the planning target volume-based optimization method based on both plan quality and robustness. The quality was evaluated using dosimetric parameters and radiobiology parameters, such as high-dose spillage (V90%RX, conformity index), intermediate-dose spillage (dose falloff products), low-dose spillage (normal tissue: V50%RX), and lung tissue complication probability. The robustness was evaluated under a uniform 3 to 5 mm setup errors with a novel proposed metric: dose–volume histogram band width. Results: When compared with planning target volume-based optimization plans, the internal target volume-based robust optimization plans have better conformity of internal target volume coverage (conformity index: 1.17 vs 1.27, P
CITATION STYLE
Shang, H., Pu, Y., & Wang, Y. (2020). Robust Optimization of SBRT Planning for Patients With Early Stage Non-Small Cell Lung Cancer. Technology in Cancer Research and Treatment, 19. https://doi.org/10.1177/1533033820916505
Mendeley helps you to discover research relevant for your work.