Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway

919Citations
Citations of this article
738Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Microbial metabolites, such as short-chain fatty acids (SCFAs), are highly produced in the intestine and potentially regulate the immune system. We studied the function of SCFAs in the regulation of T-cell differentiation into effector and regulatory T cells. We report that SCFAs can directly promote T-cell differentiation into T cells producing interleukin-17 (IL-17), interferon-γ, and/or IL-10 depending on cytokine milieu. This effect of SCFAs on T cells is independent of GPR41 or GPR43, but dependent on direct histone deacetylase (HDAC) inhibitor activity. Inhibition of HDACs in T cells by SCFAs increased the acetylation of p70 S6 kinase and phosphorylation rS6, regulating the mTOR pathway required for generation of Th17 (T helper type 17), Th1, and IL-10 + T cells. Acetate (C2) administration enhanced the induction of Th1 and Th17 cells during Citrobacter rodentium infection, but decreased anti-CD3-induced inflammation in an IL-10-dependent manner. Our results indicate that SCFAs promote T-cell differentiation into both effector and regulatory T cells to promote either immunity or immune tolerance depending on immunological milieu.

Cite

CITATION STYLE

APA

Park, J., Kim, M., Kang, S. G., Jannasch, A. H., Cooper, B., Patterson, J., & Kim, C. H. (2015). Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunology, 8(1), 80–93. https://doi.org/10.1038/mi.2014.44

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free