The physico-chemical parameters including pH and viscosity, and the fluorescence signal induced by fluorescent compounds presenting in yogurts such as riboflavin and porphyrin were measured during one week's storage at room temperature when five brands of yogurt samples were exposed to ambient air. The fluorescence spectra of yogurt showed four evident emission peaks, 525 nm, 633 nm, 661 nm, and 672 nm. To quantitatively investigate the quality of yogurt during deteriorating, a calculating method of the average rate of change (ARC) was proposed to study the relative change of fluorescence intensity in the spectral range of 600 to 750 nm associated with porphyrin and chlorin compounds. During the storage, the time evolution of two ARC, pH value, and viscosity were regular. Moreover, the ARC showed a good linear relationship with pH value and viscosity of yogurt. Further, multiple linear regression (MLR) models using two ARC as independent variables were developed to verify the dependence of fluorescence signal with pH value and viscosity, which showed a good linear relationship with an R-square of more than 85% for each class of yogurt. The results demonstrate that fluorescence spectra have a great potential to predict the quality of yogurt.
CITATION STYLE
Sun, H., Wang, L., Zhang, H., Wu, A., Zhu, J., Zhang, W., & Hu, J. (2019). Evaluation of yogurt quality during storage by fluorescence spectroscopy. Applied Sciences (Switzerland), 9(1). https://doi.org/10.3390/app9010131
Mendeley helps you to discover research relevant for your work.