Nuclear Thermodynamics

  • Povh B
  • Rith K
  • Scholz C
  • et al.
N/ACitations
Citations of this article
4Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Up to now we have concerned ourselves with the properties of nuclei in the ground state or the lower lying excited states. We have seen that the observed phenomena are characterised, on the one hand, by the properties of a degenerate fermion system and, on the other, by the limited number of the constituents. The nuclear force generates, to a good approximation, an overall mean field in which the nucleons move like free particles. In the shell model the finite size of nuclei is taken into account and the states of the individual nucleons are classified according to radial excitations and angular momenta. Thermodynamically speaking, we assign such systems zero temperature. In the first part of this chapter we want to concern ourselves with highly excited nuclei. At high excitation energies the mean free path of the nucleon inside the nucleus is reduced; it is only about 1 fm. The nucleus is then no longer a degenerate fermionic system, but rather resembles, ever more closely for increasing excitations, the state of a normal liquid. It is natural to use statistical methods in the description of such systems. A clear description may be gained by employing thermodynamical quantities. The excitation of the nucleus is characterised by the temperature. We should not forget that strictly speaking one can only associate a temperature to large systems in thermal equilibrium and even heavy nuclei do not quite correspond to such a system. As well as this, excited nuclei are not in thermal equilibrium, but rather rapidly cool down via the emission of nucleons and photons. In any thermodynamical interpretation of experimental results we must take these deficiencies into account. In connection with nuclear thermodynamics one prefers to speak about nuclear matter rather than nuclei, which implies that many experimental results from nuclear physics may be extrapolated to large systems of nucleons. As an example of this we showed, when we considered the nuclear binding energy, that by taking the surface and Coulomb energies into account one can calculate the binding energy of a nucleon in nuclear matter. This is just the volume term of the mass formula, (2.8). Heavy ion reactions have proven themselves especially useful in the investigation of the thermodynamical properties of nuclear matter. In nucleus-nucleus collisions the nuclei melt together to form for a brief time a nuclear matter system with increased density and temperature. We will try below to describe the phase diagram of nuclear matter using experimental and theoretical results about these reactions.

Cite

CITATION STYLE

APA

Povh, B., Rith, K., Scholz, C., & Zetsche, F. (2004). Nuclear Thermodynamics. In Particles and Nuclei (pp. 309–333). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05432-1_19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free